Adaptation of Na+-H+ exchange in renal microvillus membrane vesicles. Role of dietary protein and uninephrectomy.
نویسندگان
چکیده
The ablation of renal mass and institution of a high protein diet both lead to renal cortical hypertrophy and increased glomerular filtration rate (GFR). We studied Na+ transport in rat microvillus membrane vesicles isolated from uninephrectomized or sham operated rats fed 6% (low), 24% (standard), or 40% (high) protein diets. The feeding of high protein, as compared with low protein, was associated with a 50% increase in rates of pH-stimulated 22Na+ transport in isolated vesicles from sham and uninephrectomized animals. Values for the standard protein diet were intermediate to values for high and low protein. At each level of dietary protein intake, vesicular Na+ transport was greater in the uninephrectomized than in sham rats. The high protein diet was also associated with increased vesicular 22Na+ flux inhibitable by 1 mM amiloride. Increases in total and amiloride sensitive flux were also noted in the absence of a pH gradient. Conductive Na+ and H+ transport were not altered, nor were sodium-glucose and sodium-alanine cotransport. Kinetic studies revealed evidence for an increased Vmax of Na+-H+ exchange in uninephrectomized animals fed a 40 vs. a 6% protein diet whereas Km was unchanged. Supplements of NaHCO3 in the 40% protein diet, to adjust for an increased rate of net acid excretion, did not prevent the increased rates of Na+-H+ exchange. However, treatment with actinomycin D (0.12 mg/kg) prevented the increased Na+-H+ activity as well as the increased renal mass and GFR noted 24 h after unilateral nephrectomy. Na+-H+ exchange rate was closely correlated with GFR (r = 0.961; P less than 0.005) and renal mass (r = .986; P less than 0.001). These observations provide evidence for modification of the luminal membrane Na+-H+ exchanger in response to changes in dietary protein content and nephron number.
منابع مشابه
Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles.
We examined the effect of amiloride on Na+-H+ exchange in rabbit renal cortical microvillus membrane vesicles. Amiloride inhibited both the uphill Na+ accumulation induced by imposition of a transmembrane Hin+ greater than Hout+ gradient and the uphill H+ efflux induced by imposition of a Naout+ greater than Nain+ gradient. The inhibitory effect of amiloride on Na+ influx was rapidly reversible...
متن کاملPathways for oxalate transport in rabbit renal microvillus membrane vesicles.
Recent evidence suggests that apical membrane Cl--oxalate exchange plays a major role in mediating Cl- absorption in the renal proximal tubule. To sustain steady-state Cl- absorption by a mechanism of exchange for intracellular oxalate requires the presence of one or more pathways for recycling oxalate from lumen to cell. Accordingly, we evaluated the mechanisms of oxalate transport in luminal ...
متن کاملPhysiologic Parameters in Streptozotocin - induced Diabetes Mellitus Diabetes Control No treatment + insulin + NaHCO
Diabetes mellitus is associated with important changes in renal hemodynamics and transport function. Disturbances in solute transport have also been characterized in nonrenal tissues during hyperglycemia and insulinopenia. The purpose of this study was to determine if diabetes is associated with adaptive changes in function of the brush-border membrane of the proximal tubule. We studied Na+ and...
متن کاملProperties of the Na+-H+ exchanger in renal microvillus membrane vesicles.
I joined the department of medicine at Yale as an assistant professor in 1977 and had a laboratory in the department of physiology. My initial studies and grants were for the characterization of Na+-glucose cotransport in renal brush border membrane vesicles, a research interest and experimental model system that I had brought from my research training with Bert Sacktor at the Gerontology Resea...
متن کاملpH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles.
The transport mechanism of urate and p-aminohippurate (PAH) was evaluated in microvillus membrane vesicles isolated from the renal cortex of the mongrel dog. Imposition of a transmembrane pH gradient (pHo less than pH1) markedly accelerated the uptake of [14C]urate and [3H]PAH and caused the transient accumulation ("overshoot") of each anion above its final level of uptake. The transport of ura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 74 6 شماره
صفحات -
تاریخ انتشار 1984